Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 2-(*N*-cyclohexyl-2-nitrophenyl-sulfonamido)-2-oxoacetate

Bao-Lei Wang, Feng-Qi He, Zheng-Ming Li* and Hai-Bin Song

State Key Laboratory Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China Correspondence e-mail: wangbaolei@126.com

Received 22 May 2007; accepted 31 May 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.128; data-to-parameter ratio = 13.7.

In the title compound, $C_{16}H_{20}N_2O_7S$, the cyclohexane ring has a chair conformation and the two C=O groups are in a *trans* arrangement, the O=C-C=O torsion angle being -114.0 (5)°. The dihedral angle between the tertiary amine plane and the ethoxycarbonyl group O-C=O is 75.1 (2)°, while the dihedral angle between the amine plane and the benzene ring is 74.0 (2)°.

Related literature

For related reports, see: Schulz *et al.* (1988); Aulabaugh & Schloss (1990); Lee *et al.* (2005); Wang *et al.* (2005).

Experimental

Crystal data

 $C_{16}H_{20}N_2O_7S$ $V = 1839.5 (19) Å^3$
 $M_r = 384.40$ Z = 4

 Monoclinic, P_{21}/n Mo K α radiation

 a = 10.962 (7) Å $\mu = 0.22 \text{ mm}^{-1}$

 b = 12.352 (7) Å T = 294 (2) K

 c = 13.879 (8) Å $0.24 \times 0.22 \times 0.20 \text{ mm}$

Data collection

 $\begin{array}{l} \mbox{Bruker SMART 1000 CCD area-} \\ \mbox{detector diffractometer} \\ \mbox{Absorption correction: multi-scan} \\ \mbox{(SADABS; Bruker, 1998)} \\ \mbox{$T_{\rm min}=0.896$, $T_{\rm max}=0.960$} \end{array}$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 237 parameters $wR(F^2) = 0.129$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.23$ e Å⁻³3240 reflections $\Delta \rho_{min} = -0.26$ e Å⁻³

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

9177 measured reflections

 $R_{\rm int} = 0.074$

3240 independent reflections

1813 reflections with $I > 2\sigma(I)$

This work was supported by the Major State Basic Research Development Programme of China (973 Programme) (grant No. 2003CB114406).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2108).

References

Aulabaugh, A. & Schloss, J. V. (1990). Biochemistry, 29, 2824–2830.

Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.

Lee, Y.-T., Ta, H. T. & Duggleby, R. G. (2005). Plant Sci. 168, 1035–1040.

- Schulz, A., Spönemann, P., Köcher, H. & Wengenmayer, F. (1988). *FEBS Lett.* **238**, 375–378.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wang, B.-L., Duggleby, R. G., Li, Z.-M., Wang, J.-G., Li, Y.-H., Wang, S.-H. & Song, H.-B. (2005). *Pest Manag. Sci.* 61, 407–412.

supplementary materials

Acta Cryst. (2007). E63, o3264 [doi:10.1107/S1600536807026785]

Ethyl 2-(N-cyclohexyl-2-nitrophenylsulfonamido)-2-oxoacetate

B.-L. Wang, F.-Q. He, Z.-M. Li and H.-B. Song

Comment

Inhibitors of KARI (ketol-acid reductoisomerase) have been synthesized and tested as herbicides. 2-Dimethylphosphinoyl-2-hydroxy acetic acid (Hoe 704, Schulz *et al.*, 1988), *N*-hydroxy-*N*-isopropyloxamate (IpOHA, Aulabaugh *et al.*, 1990) and cyclopropane-1,1-dicarboxylate (CPD, Lee *et al.*, 2005) are potent inhibitors of the enzyme *in vitro* but their activity as herbicides are weak. There are few reports about the design, synthesis and biological activity of new KARI inhibitors. Nevertheless, inhibitors of KARI remain a potential source for finding novel herbicidal compounds (Wang *et al.*, 2005). With this in mind, a series of ethyl-2-(*N*-substituted-arylsulfonamido)-2-oxoacetate compounds has been designed and synthesized, based on the structure of KARI inhibitor IpOHA. The X-ray crystal structure determination of the title compound, (I), was undertaken in order to investigate the relationship between structure and herbicidal activity.

The X-ray analysis reveals that in the title compound, the cyclohexane ring is in a chair conformation and is bonded to the amine N atom (Fig. 1). Two C=O groups are *trans* arranged, with the torsion angle O5—C13—C14—O6 being $-114.0(5)^{\circ}$. The dihedral angle between the tertiary amine plane (S1/C7/C13/N2) and ethoxylcarbonyl O—C=O group (O6/O7/O14) is 75.1 (2)°. The dihedral angle between the amine plane and benzene ring C1…C6 is 74.0 (2)°.

Experimental

To a well stirred solution of *N*-cyclohexyl-2-nitrobenzenesulfonamide (5.68 g, 0.02 mol) in 20 ml of dry THF was added 50% NaH (1.44 g, 0.03 mol) slowly. After 1 h under stirring, a solution of ethyl oxalyl chloride (2.73 g, 0.02 mol) in 5 ml of dry THF was dropwise added and the mixture further stirred at 313–323 K for 3 h. After removing the solvent, water was added (20 ml), and the mixture was extracted with ethyl acetate and dried over magnesium sulfate. The ester was removed and the residue was purified by chromatography over silica gel with petroleum ether/ethyl acetate as eluent (9:1), affording (I). Yield: 87%; m.p. 391–392 K. ¹H NMR (CDCl₃) δ : 8.34–7.75 (m, 4H, Ph—H), 4.36 (q, *J*=7.20 Hz, 2H, CH₂), 3.88–3.78 (m, 1H, cyclohexyl-CH), 1.37 (t, *J*=7.20 Hz, 3H, CH₃), 2.23–1.11 (m, 10H, cyclohexyl-CH₂). Anal. Calcd. for C₁₆H₂₀N₂O₇S: C 49.99, H 5.24, N 7.29%. Found: C 50.13, H 5.31, N 7.61%. Colourless single crystals suitable for X-ray diffraction analysis were obtained by recrystallization from petroleum ether and ethyl acetate (1:1).

Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 (aromatic CH), 0.96 (methyl CH₃), 0.97 (methylene CH₂) or 0.98 Å (methine CH), and with $U_{iso}(H) = 1.5U_{eq}(\text{carrier C} \text{ atom})$ for methyl group and $U_{iso}(H) = 1.2U_{eq}(\text{carrier C} \text{ atom})$ for other H atoms.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 20% probability level.

Ethyl 2-(N-cyclohexyl-2-nitrophenylsulfonamido)-2-oxoacetate

Crystal data	
$C_{16}H_{20}N_2O_7S$	$F_{000} = 808$
$M_r = 384.40$	$D_{\rm x} = 1.388 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 391-392 K
Hall symbol: -P 2yn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.962 (7) Å	Cell parameters from 1731 reflections
b = 12.352 (7) Å	$\theta = 2.2 - 21.7^{\circ}$
c = 13.879 (8) Å	$\mu = 0.22 \text{ mm}^{-1}$
$\beta = 101.813 \ (11)^{\circ}$	T = 294 (2) K
$V = 1839.5 (19) \text{ Å}^3$	Block, colourless
Z = 4	$0.24 \times 0.22 \times 0.20 \text{ mm}$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	3240 independent reflections
Radiation source: fine-focus sealed tube	1813 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.074$
T = 294(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -13 \rightarrow 11$
$T_{\min} = 0.896, T_{\max} = 0.960$	$k = -14 \rightarrow 12$
9177 measured reflections	$l = -16 \rightarrow 16$

Refinement

Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0538P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\text{max}} = 0.001$

S = 1.01

3240 reflections

237 parameters

methods

 $\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Primary atom site location: structure-invariant direct Extinction coefficient: 0.029 (2)

Secondary atom site location: difference Fourier map

Fractional atomic coordinates an	d isotropic or	equivalent	isotropic	displacement	parameters	$(Å^2$:)
----------------------------------	----------------	------------	-----------	--------------	------------	--------	----

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.30775 (8)	0.54366 (6)	0.13647 (6)	0.0434 (3)
01	-0.0287 (3)	0.6633 (2)	0.0056 (2)	0.0895 (10)
O2	0.1287 (3)	0.7293 (2)	0.10732 (18)	0.0711 (8)
03	0.2700 (2)	0.56089 (16)	0.03315 (15)	0.0525 (6)
O4	0.3794 (2)	0.62380 (16)	0.19704 (17)	0.0578 (7)
05	0.5814 (3)	0.3564 (2)	0.2134 (2)	0.1016 (11)
O6	0.4471 (3)	0.4822 (2)	0.36867 (19)	0.0739 (8)
07	0.6185 (2)	0.55085 (19)	0.32483 (16)	0.0622 (7)
N1	0.0524 (3)	0.6590 (2)	0.0797 (2)	0.0554 (8)
N2	0.3898 (2)	0.42994 (18)	0.15192 (18)	0.0429 (7)
C1	0.0573 (3)	0.5618 (2)	0.1426 (2)	0.0444 (8)
C2	-0.0531 (3)	0.5281 (3)	0.1653 (3)	0.0630 (10)
H2	-0.1273	0.5634	0.1389	0.076*
C3	-0.0524 (4)	0.4413 (3)	0.2278 (3)	0.0704 (11)
H3	-0.1263	0.4173	0.2438	0.085*
C4	0.0586 (4)	0.3903 (3)	0.2665 (3)	0.0645 (11)
H4	0.0592	0.3324	0.3094	0.077*
C5	0.1687 (3)	0.4233 (2)	0.2427 (2)	0.0494 (9)
Н5	0.2425	0.3874	0.2694	0.059*
C6	0.1703 (3)	0.5101 (2)	0.1792 (2)	0.0396 (8)
C7	0.3473 (3)	0.3418 (2)	0.0781 (2)	0.0423 (8)
H7	0.2593	0.3564	0.0502	0.051*
C8	0.4136 (3)	0.3436 (3)	-0.0075 (2)	0.0556 (10)
H8A	0.5012	0.3272	0.0158	0.067*
H8B	0.4072	0.4152	-0.0368	0.067*
С9	0.3552 (3)	0.2602 (3)	-0.0844 (2)	0.0618 (11)
H9A	0.2698	0.2809	-0.1121	0.074*
H9B	0.4008	0.2591	-0.1374	0.074*
C10	0.3567 (4)	0.1474 (3)	-0.0398 (3)	0.0631 (11)
H10A	0.3144	0.0972	-0.0892	0.076*
H10B	0.4422	0.1232	-0.0186	0.076*
C11	0.2935 (4)	0.1475 (3)	0.0467 (3)	0.0668 (11)
H11A	0.2993	0.0757	0.0757	0.080*
H11B	0.2059	0.1644	0.0241	0.080*
C12	0.3517 (4)	0.2296 (3)	0.1251 (2)	0.0613 (10)
H12A	0.4374	0.2097	0.1524	0.074*
H12B	0.3061	0.2302	0.1780	0.074*

supplementary materials

C13	0.5018 (4)	0.4223 (3)	0.2206 (3)	0.0598 (10)
C14	0.5169 (4)	0.4910 (3)	0.3133 (3)	0.0539 (9)
C15	0.6404 (4)	0.6210 (3)	0.4111 (3)	0.0705 (11)
H15A	0.6423	0.5787	0.4702	0.085*
H15B	0.5742	0.6743	0.4057	0.085*
C16	0.7611 (4)	0.6753 (4)	0.4156 (4)	0.1046 (16)
H16A	0.8246	0.6219	0.4152	0.157*
H16B	0.7816	0.7173	0.4749	0.157*
H16C	0.7557	0.7221	0.3597	0.157*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0479 (5)	0.0345 (5)	0.0484 (5)	-0.0014 (4)	0.0111 (4)	-0.0009 (4)
01	0.068 (2)	0.105 (2)	0.083 (2)	0.0049 (16)	-0.0142 (17)	0.0407 (17)
02	0.099 (2)	0.0392 (15)	0.0726 (18)	-0.0055 (15)	0.0123 (16)	0.0008 (13)
O3	0.0659 (16)	0.0518 (14)	0.0419 (13)	0.0043 (11)	0.0156 (11)	0.0094 (11)
O4	0.0561 (16)	0.0374 (13)	0.0761 (16)	-0.0097 (11)	0.0047 (13)	-0.0102 (12)
05	0.070 (2)	0.104 (2)	0.112 (2)	0.0413 (18)	-0.0251 (17)	-0.0567 (19)
O6	0.082 (2)	0.0768 (19)	0.0632 (17)	-0.0175 (15)	0.0156 (16)	-0.0083 (14)
07	0.0566 (16)	0.0690 (17)	0.0578 (15)	-0.0069 (13)	0.0042 (12)	-0.0229 (13)
N1	0.056 (2)	0.050 (2)	0.059 (2)	0.0125 (16)	0.0109 (17)	0.0091 (16)
N2	0.0451 (17)	0.0363 (15)	0.0455 (16)	0.0027 (12)	0.0050 (13)	-0.0092 (12)
C1	0.050 (2)	0.042 (2)	0.0414 (19)	0.0009 (17)	0.0101 (16)	0.0018 (15)
C2	0.047 (2)	0.070 (3)	0.073 (3)	0.006 (2)	0.017 (2)	0.003 (2)
C3	0.062 (3)	0.072 (3)	0.084 (3)	-0.008 (2)	0.032 (2)	0.012 (2)
C4	0.075 (3)	0.056 (2)	0.070 (3)	-0.006 (2)	0.032 (2)	0.014 (2)
C5	0.056 (2)	0.039 (2)	0.054 (2)	0.0025 (16)	0.0137 (18)	0.0072 (16)
C6	0.046 (2)	0.0351 (18)	0.0382 (18)	-0.0046 (15)	0.0088 (15)	-0.0032 (14)
C7	0.045 (2)	0.0376 (19)	0.0441 (19)	-0.0018 (15)	0.0078 (16)	-0.0091 (15)
C8	0.059 (2)	0.051 (2)	0.062 (2)	-0.0047 (17)	0.026 (2)	-0.0094 (18)
С9	0.076 (3)	0.061 (2)	0.054 (2)	-0.002 (2)	0.025 (2)	-0.0127 (19)
C10	0.078 (3)	0.051 (2)	0.061 (2)	-0.0043 (19)	0.016 (2)	-0.0168 (19)
C11	0.095 (3)	0.041 (2)	0.067 (3)	-0.007 (2)	0.022 (2)	-0.0048 (19)
C12	0.088 (3)	0.046 (2)	0.050 (2)	0.000 (2)	0.014 (2)	-0.0057 (18)
C13	0.054 (2)	0.054 (2)	0.066 (2)	0.0071 (19)	-0.002 (2)	-0.0185 (19)
C14	0.051 (2)	0.050 (2)	0.055 (2)	0.0026 (19)	-0.005 (2)	-0.0090 (18)
C15	0.072 (3)	0.066 (3)	0.069 (3)	-0.012 (2)	0.003 (2)	-0.027 (2)
C16	0.094 (4)	0.094 (3)	0.125 (4)	-0.035 (3)	0.019 (3)	-0.045 (3)
Commercia	(8 0)					
Geometric pa	urameters (A, °)					
S1—O3		1.425 (2)	С7—	C12	1.52	8 (4)
S1—O4		1.426 (2)	С7—	H7	0.98	00
S1—N2		1.658 (3)	C8—	C9	1.52	7 (4)

01—N1	1.216 (4)	С9—Н9В	0.9700
O2—N1	1.212 (3)	C10—C11	1.504 (5)
O6—C14	1.195 (4)	C10—H10A	0.9700
O7—C14	1.319 (4)	C10—H10B	0.9700
O7—C15	1.458 (4)	C11—C12	1.528 (4)
N1—C1	1.478 (4)	C11—H11A	0.9700
C1—C2	1.377 (5)	C11—H11B	0.9700
C1—C6	1.395 (4)	C12—H12A	0.9700
С2—С3	1.377 (5)	C12—H12B	0.9700
С2—Н2	0.9300	C13—C14	1.522 (5)
C3—C4	1.378 (5)	C15—C16	1.473 (5)
С3—Н3	0.9300	C15—H15A	0.9700
C4—C5	1.376 (5)	C15—H15B	0.9700
C4—H4	0.9300	C16—H16A	0.9600
C5—C6	1.390 (4)	C16—H16B	0.9600
С5—Н5	0.9300	C16—H16C	0.9600
С7—С8	1.514 (4)		
O3—S1—C6	106.24 (15)	C10—C9—C8	111.4 (3)
O3—S1—O4	120.07 (14)	С10—С9—Н9А	109.4
O3—S1—N2	107.14 (13)	С8—С9—Н9А	109.4
O4—S1—N2	107.06 (14)	С10—С9—Н9В	109.4
O4—S1—C6	111.55 (14)	С8—С9—Н9В	109.4
N2—S1—C6	103.50 (14)	Н9А—С9—Н9В	108.0
C7—N2—S1	116.2 (2)	C11—C10—C9	110.8 (3)
C13—N2—C7	121.6 (2)	C11—C10—H10A	109.5
C13—N2—S1	121.6 (2)	C9—C10—H10A	109.5
C14—O7—C15	115.2 (3)	C11—C10—H10B	109.5
O2—N1—O1	125.0 (3)	С9—С10—Н10В	109.5
O2—N1—C1	117.1 (3)	H10A-C10-H10B	108.1
O1—N1—C1	117.8 (3)	C10-C11-C12	112.0 (3)
C2—C1—C6	122.3 (3)	C10-C11-H11A	109.2
C2-C1-N1	117.0 (3)	C12-C11-H11A	109.2
C6—C1—N1	120.6 (3)	C10-C11-H11B	109.2
C1—C2—C3	119.2 (3)	C12-C11-H11B	109.2
C1—C2—H2	120.4	H11A-C11-H11B	107.9
С3—С2—Н2	120.4	C11—C12—C7	109.1 (3)
C2—C3—C4	119.4 (4)	C11—C12—H12A	109.9
С2—С3—Н3	120.3	C7—C12—H12A	109.9
С4—С3—Н3	120.3	C11—C12—H12B	109.9
C5—C4—C3	121.3 (3)	C7—C12—H12B	109.9
C5—C4—H4	119.4	H12A—C12—H12B	108.3
C3—C4—H4	119.4	O5—C13—N2	122.5 (3)
C4—C5—C6	120.4 (3)	O5—C13—C14	119.3 (3)
C4—C5—H5	119.8	N2-C13-C14	117.9 (3)
С6—С5—Н5	119.8	O6—C14—O7	127.5 (3)
C5—C6—C1	117.3 (3)	O6—C14—C13	121.3 (3)
C5—C6—S1	120.9 (2)	O7—C14—C13	111.0 (4)
C1—C6—S1	121.4 (2)	O7—C15—C16	107.5 (3)
N2—C7—C8	113.1 (2)	O7—C15—H15A	110.2

supplementary materials

N2—C7—C12	112.9 (2)	C16—C15—H15A	110.2
C8—C7—C12	111.7 (3)	O7—C15—H15B	110.2
N2—C7—H7	106.2	C16—C15—H15B	110.2
С8—С7—Н7	106.2	H15A—C15—H15B	108.5
С12—С7—Н7	106.2	C15—C16—H16A	109.5
С7—С8—С9	109.8 (3)	C15—C16—H16B	109.5
С7—С8—Н8А	109.7	H16A—C16—H16B	109.5
С9—С8—Н8А	109.7	C15—C16—H16C	109.5
С7—С8—Н8В	109.7	H16A—C16—H16C	109.5
С9—С8—Н8В	109.7	H16B—C16—H16C	109.5
H8A—C8—H8B	108.2		
O3—S1—N2—C13	135.1 (3)	O4—S1—C6—C1	93.4 (3)
O4—S1—N2—C13	5.1 (3)	N2—S1—C6—C1	-151.9 (2)
C6—S1—N2—C13	-112.9 (3)	C13—N2—C7—C8	-77.8 (4)
O3—S1—N2—C7	-35.9 (2)	S1—N2—C7—C8	93.3 (3)
O4—S1—N2—C7	-166.0 (2)	C13—N2—C7—C12	50.3 (4)
C6—S1—N2—C7	76.1 (2)	S1—N2—C7—C12	-138.7 (2)
O2—N1—C1—C2	130.9 (3)	N2—C7—C8—C9	-173.6 (3)
O1—N1—C1—C2	-47.8 (4)	C12—C7—C8—C9	57.7 (4)
O2—N1—C1—C6	-46.9 (4)	C7—C8—C9—C10	-56.1 (4)
O1—N1—C1—C6	134.4 (3)	C8—C9—C10—C11	55.5 (4)
C6—C1—C2—C3	1.1 (5)	C9-C10-C11-C12	-56.1 (4)
N1—C1—C2—C3	-176.7 (3)	C10-C11-C12-C7	56.6 (4)
C1—C2—C3—C4	0.2 (6)	N2-C7-C12-C11	173.7 (3)
C2—C3—C4—C5	-1.0 (6)	C8—C7—C12—C11	-57.5 (4)
C3—C4—C5—C6	0.4 (5)	C7—N2—C13—O5	14.3 (6)
C4—C5—C6—C1	0.8 (5)	S1—N2—C13—O5	-156.2 (3)
C4—C5—C6—S1	-172.5 (3)	C7—N2—C13—C14	-158.5 (3)
C2—C1—C6—C5	-1.6 (5)	S1—N2—C13—C14	30.9 (4)
N1-C1-C6-C5	176.1 (3)	C15—O7—C14—O6	-6.1 (5)
C2—C1—C6—S1	171.7 (3)	C15—O7—C14—C13	179.1 (3)
N1-C1-C6-S1	-10.6 (4)	O5-C13-C14-O6	-114.0 (5)
O3—S1—C6—C5	133.9 (2)	N2-C13-C14-O6	59.1 (5)
O4—S1—C6—C5	-93.6 (3)	O5-C13-C14-O7	61.2 (5)
N2—S1—C6—C5	21.2 (3)	N2-C13-C14-O7	-125.7 (3)
O3—S1—C6—C1	-39.2 (3)	C14—O7—C15—C16	176.2 (3)

